Wednesday, February 27, 2008

History of climate changes


HISTORY OF CLIMATE CHANGES

The climate of Earth has not remained same throughout the geological history of the planet. A broad history of climate changes has been constructed based on palaeogeomorphic studies for the geological past and on observations through network of meteorological stations for the present time. An outline of this history of climate changes has been given below.

Precambrian: Very little data is available to deduce the climatic conditions during Precambrian times.

Palaeozoic era (570 to 235 million years B.C.): Somewhat more information is available for this era. It has been deduced that during major part of Palaeozoic era the climate was very warm in all parts of the globe and moisture conditions on the continents fluctuated within wide boundaries.

Towards the end of Palaeozoic, at the boundary between Carboniferous and Permian periods, a glaciation developed extending over a large part of the land area which is presently located at tropical latitudes. It is difficult to estimate the geological location of that glaciation during its development since substantial shifts may have subsequently occurred in the location of Earth’s continents and poles. During Permocarboniferous glaciation, climatic conditions in other regions of Earth were relatively warm.

During Permian period, a thermal zonality appeared and areas of dry climate were greatly enlarged on continents.

Mesozoic era (235 to 66 million B.C.): The climate of this era was relatively uniform. Climatic conditions similar to today’s tropical climate prevailed over a large part of Earth. At higher latitudes, climate was cooler, though it remained quite warm with negligible seasonal changes in temperature. Moisture conditions on the continents appear to have been homogeneous during this era by comparison with the present, even though zones of insufficient and excess humidity did exist. Towards the end Cretaceous period, the zone of hot climate became less extensive while the zone of dry climatic conditions spread.

Cenozoic era: In passing from Mesozoic to Cenozoic era, no perceptible changes in climate occurred. During the second half of Tertiary period (towards the middle of Oligocene epoch) a process of progressive cooling began that was most pronounced at middle and especially at high latitudes. Since then a new climatic zone developed at high latitudes and gradually widened whose meteorological regime was similar to that of current climatic conditions at middle latitudes. The winter air temperature in that zone fell below zero and this made possible the seasonal formation of snow covers. At the same time the specific properties of continental climates became more pronounced in continental regions distant from the ocean.

During Miocene epoch the cooling process was not uniform and there were periods of temperature rises as well. But these did not alter the general tendency towards an intensification of thermal zonality attributable to declining temperatures at high latitudes.

During the Pliocene epoch the above process was further intensified when the continental glaciation that started during Oligocene in Antarctic (and which continues to exist today) began to spread. Towards the end of Pliocene the climate became warmer than it is today, it was more similar to contemporary climatic conditions than to those of Mesozoic era and of the first half of the Tertiary period.

During Pleistocene epoch the climate differed sharply from preceding conditions in Mesozoic era and the Tertiary period when the thermal zonality was not very pronounced. Pleistocene epoch began about 1.5 to 2.0 million years ago following an intensification of the cooling that occurred towards the end of Tertiary period at middle and high latitudes. This contributed to development of large continental glaciations. The number of such glaciations and their time of occurrence are known only approximately. Studies in Alps have identified four principal European ice ages termed Gunz, Mindel, Riss and Wurm. Each of these glacial ages could be further subdivided into several stages and glaciations receded during the intervals that divided them. Periods of spread and receding of glaciations occupied only a smaller part of Pleistocene and relatively warm intervening periods were more prolonged. During these warmer periods, ice cover on continents disappeared and existed only in mountainous regions and at high latitudes. It has been established that the advance and receding of glaciations in Europe, Asia and North America occurred more or less at the same time and a similar correspondence occurred in ice ages in Northern and Southern hemispheres. The spread of ice covers on continents was greatest in regions of more humid maritime climates. In relatively dry climates of Northern Asia, glaciations occupied a relatively small area. During periods of particularly vas glaciations the continental ice cover in Northern Hemisphere reached on the average, 57o North Latitude and in individual regions 40o N latitude. The thickness of continental ice cover over a major part was several hundred meters and in some regions it reached to several kilometers. With continental glaciation, the boundary of sea polar ice also moved to lower latitudes. This greatly increased the overall area of our globe’s permanent ice cover. During each glaciation period the snow level in mountainous regions not subjected to glaciation moved down by hundreds of meters and sometimes more than a kilometer. During these ice ages the zones of permafrost also increased greatly; their boundary moving to lower latitudes over distances that sometimes reached several thousand kilometers. During ice ages, along with extensive glaciations, the level of World Ocean declined by 100 to 150 meters below its present level. During warm periods between ice ages, glaciations receded and level of oceans rose by several tens of meters over the present level. The climate of ice ages was characterized by perceptible decline in air temperature in all the regions of world. This reduction in temperature on the average amounted to several degrees below the current temperature and was more pronounced at higher latitudes. In warm periods between ice ages, air temperature was higher than it is today. The influence of ice ages on precipitation is less clear. Some data suggest that moisture conditions in different parts of the world changed in different ways during periods of glaciation. This points to changes in the system of atmospheric circulation produced by glaciations and to corresponding changes in temperature differences between Equator and poles.

Holocene epoch represented a relatively short time period in the history of climate changes that followed the end of Quaternary glaciations. There were several fluctuations in the climatic conditions during this epoch. Maximal development of Wurmian glaciation occurred approximately 20,000 B.C. and after few thousand years this glaciation was destroyed. After this an epoch followed in which climate was relatively cold and humid at middle latitudes of Northern Hemisphere. About 12,000 B.C. temperature increased substantially (the Allered) and soon after this a cold period followed. As a result of these climatic fluctuations, Europe’s summer air temperature changed by several degrees. Subsequently temperature increased once again and the last large-scale glaciations in Europe and North America disappeared between 5,000 to 7,000 B.C. At that time, post-glaciation temperature increases reached a maximum. Between 5,000 to 6,000 B.C. air temperature at middle latitudes of Northern Hemisphere was about 1 to 3 degrees C higher than today. During this time, changes in atmospheric circulation also occurred. While polar ice boundaries shifted to the north, the sub-tropical high-pressure belt moved to higher latitudes leading to an expansion of arid zones in a number of regions of Europe, Asia and North America. The volume of precipitation in contemporary desert areas at low latitudes also increased. During that period, Sahara’s climate was relatively humid. Subsequently a trend towards lower temperatures prevailed that was especially pronounced during the fist half of the first millennium B.C. Together with these changes in thermal regime the precipitation regime also changed and gradually approached its present state.

An appreciable rise in temperature occurred at the end of first and beginning of second millennium A.D. At that time polar ice receded to high latitudes. The process of cooling that began in 13th century and reached a maximum at the beginning of 17th century was accompanied by an extension of mountain glaciers and is sometimes referred to as a small ice age. Subsequently temperature increased again and ice has receded. The climatic conditions of 18th and 19th century differed little from those that exist today.

Towards the end of 19th century there has been a gradual increase in air temperature at all latitudes of Northern Hemisphere and in all seasons, especially at high latitudes during cold seasons. Increase in temperature reached a maximum in 1930s when average temperature in Northern Hemisphere increased by about 0.6o C by comparison with the end of 19th century. In 1940s a cooling started that continued until recently. This cooling, however, was relatively slow in comparison with preceding cycle of increased temperatures. In Northern Hemisphere, increased air temperature has been accompanied by reduction in polar ice area, receding of the boundary of permafrost to high latitudes and a northward movement of forest and tundra boundaries as well other changes in natural conditions. The amount of precipitation in a number of regions of insufficient moisture was reduced as the air temperature increased, particularly during cold seasons of the year. It is also believed that that during the first half of 20th century, temperature increased in Southern Hemisphere as well.

No comments: